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ABSTRACT 

In  an  attempt  to  understand  the  implications of Long’s “generalized dimensional  analysis,”  this  method  was 
applied to  the  problem of the  wind  distribution in the  planetary  boundary  layer.  The  assumption was made  that  
the  equations of motion,  together  with  an  appropriate  set of boundary  conditions, define a unique  relationship  among 
the wind, the stress,  and  certain  other  variables  and  parameters.  This  relationship was found  to  be  more  precisely 
specified by  the generalized analysis  than  by  ordinary  dimensional  methods,  although when the solution is required 
t o  reduce to  the logarithmic wind profile near  the  ground  both  procedures give identical  results  and yield a universal 
relationship among the  latitude,  the  surface roughness, the  stress,  the  geostrophic wind, and  the  depth of the  plane- 
tary  layer,  which is remarkably  similar  to  one  found  by  Rossby  and  Mont.gomery  by a completely  different  argu- 
ment.  That  such a result  may  be  found  by  purely dimensional reasoning is taken as an indication of the power 
of the  dimensional  method. 

The  solution  achieved  was possible only  through  the artifice of treating  all  vectors as if they were vectors in two 
dimensions  only.  The  dimensional  method  in  its  present  form does not  appear  capable of treating  the  more  complete 
vector problem, although  there  are  indications bhat when the  foundations of dimensional  analysis,  which lie in in- 
variance  theory,  are  better  understood,  such problems too will lend  themselves to  solution  by  dimensional  reasoning. 

1. INTRODUCTION 
In  a  recent  paper,  Long [7] suggested that  the most effi- 

cient use of dimensional analysis  in fluid mechanics is  in 
combination  with the known mathematical form of the 
governing equations when these  equations are  not  ana- 
lytically solvable. This  approach, which Long calls “gen- 
eralized dimensiond  analysis,”  makes use of mat.hematica1 
principles concerning the  invariance of equations  under 
transformations of the variables and completely ignores 
physical dimensions, considering only the  mathematical 
relationships  required by  the governing equations. Solu- 
tions  found by this  method  are a t  least  as efficient (in the 
sense that they  contain  a  minimum  number of dimension- 
less variables) and frequently  more efficient than  those 

* Paper presented at  the 237th National  Meeting 0 1  the American Meteorological 
Society, April 19-22, 1966, Washington, D.C.  

found  by the  more usual  method which makes  use of 
physical dimensions. 

This  paper describes an  attempt to  apply  both Long’s 
procedure and  the  ordinary dimensional method  to  the 
wind distribution  in  the  planetary  boundary  layer,  making 
use only of the  equations of motion and  the known  loga- 
rithmic wind profile near the  ground.  Certain questions 
concerning the applicability of dimensional methods  to 
vector problems, which arose  in  this study, will he dis- 
cussed briefly. The dimensional method itself will not  be 
reviewed here; it is discussed in  a  number of texts,  t,he 
standard reference being that  by Bridgman [2], while a 
more  recent  and  more complete discussion is given by 
Langhaar [6]. A sbirnulating discussion of fundamental 
dimensions, including the concepts of vector  lengths  and 
the  dual  role of mass, is given by  Huntley [4]. The notion 
of dimensional analysis as a special case of invariance 
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theory  is int,roduced by  Langhaar  and  by  Ipsen [5], and  is 
discussed in  more  detail  by Birkhoff [I]  and  Long [7, 81. 

9. FORMULATION OF THE  PROBLEM 

The  mathematical  foundation of dimensional  analysis 
lies in the Pi Theorem  (Buckingham [3]; see also Langhaar 
[6], pp. 47-58) which states  that if among the  variables 
xl, x2, . . ., xN there  exists  a  functional  relationship 

tben  there  exists  another  functional  relationship 

where ?rl, 7 r 2 ,  . . ., ‘~r, is  a complete set of independent 
dimensionsless combinations of the  variables xl,  x2, . . . , 
xN, and (N-n) is the  number of independent dimensions 
in  terms of which xl, x2, . . . , xN are expressed. (Through- 
out  this  paper,  the  symbol + will refer to any unspecified 
function arising in a  dimensional argument; + does not 
necessarily represent  the  same  function  in  the  various 
equations in which it appears.) In  ordinary dimensional 
analysis,  the  variables xl,  x2, . . ., xN are expressed in 
terms of the physical dimensions, mass,  length,  time,  etc. 
The generalized approach, on the  other  hand, ignores 
physical  dimensions  and seeks the  maximum  number of 
independent dimensions that will produce  dimensional 
homogebeity in the  governing  equations.  Thus for the 
generalized procedure to  be  applicable  the  governing 
equations  must be  known. 

A problem  which seems to lend itself to  this treatment 
is that of the wind distribution  in  the  planetary  boundary 
layer.  The problem may be stated  in  the following way. 
Very near  the  ground,  the  mean wind under  adiabatic 
conditions  is given by 

where u, is  equal  to ( T / P ) ’ / ~ ,  k is  the  von  K&rm&n  constant, 
roughly  equal to 0.4, and zo is the  “roughness  parameter” 
representing  the  height a t  which the  mean wind  becomes 
zero. (The  Reynolds  stress T ,  and  consequently u,, is 
assumed constant  with  height  within  the  immediate  sur- 
face layer.) No such simple relationship  is  known  for 
greater  heights  within  the  planetary  boundary  layer. 
There  the mean flow is governed by  the  equations derived 
by  Reynolds [9] in 1895 for a turbulent fluid of uniform 
density, 

d u  1 bp 1 b T ,  1 b T ,  

P bz P a z  g=-p z + j v + -  -=j(v-vg)+- - 

where j is the Coriolis parameter? T ,  and rU represent 
Reynolds  stresses, u, and v, are  components of the geo- 
strophic  wind,  and  the  terms  representing  molecular 
viscosity have been neglected in comparison with  the 
terms  representing  turbulence. A third  equation de- 
scribes the  vertical  acceleration,  but it is generally  assumed 
to reduce t o  the  hydrostatic  equation  and will be  omitted 
in the present  study. If there  are no accelerations, the 
left sides of the equations  become zero, and  the wind 
components  are given by 

1 arz 
P f  

v=v ” - 

u=u,+- - 1 bTy 

Pf 

These  equations  relate  the wind to  the  vertical  gradient 
of the  Reynolds  stress,  and  are  therefore  not  directly 
compara.ble with  equation (3) which relates  the wind to 
the  stress itself. 

The  object of this study was to  derive,  by dimensional 
methods,  an expression for  the wind throughout  the 
planetary  layer  that  reduces  to  the  logarithmic  law  near 
the  ground.  In  order  to  do  this  it was necessary to  make 
a  number of assumptions whose validity  may be ques- 
tioned;  these  assumptions will be  introduced  and assessed 
later in light of the  results  obtained. First, however, it 
is  important  to  note  a  basic  distinction  between  the  layer 
immediately  above  the surface and  the  remainder of the 
planetary  boundary  layer  above it. 

Very near  the surface, the wind,  wind  shear, and  stress 
all lie in the  same  direction,  and  the  governing  equation 
(3) is a scalar  equation.  Above  the surface layer, however, 
the  effects of the  earth’s  rotation  enter,  the wind direction 
changes  with  height,  and  the  problem  becomes  essentially 
vectorial. It is  therefore  natural  to  write  the  governing 
equations in vector form; however  dimensional  analysis 
would then introduce dimensionless “ratios” of vectors, 
sucb as V/V,, and such  llratios’l  are  not defined within 
ordinary  vector usage. No such  problem  arises if the 
equations  are  retained in scalar  component  form;  however 
it  is  then difficult to  derive  a single equation reducing  to 
the  logarithmic  law  near  the  ground. A third  alternative, 
which will be adopted  here, is to  represent  the  vectors 
as complex variables;  this is permissible since to a  high 
degree of approximation all the  relevant  vectors  lie  in  the 
horizontal  plane  and  are  therefore  two-dimensional. By 
this artifice the  essential  vector  aspects of the problem 
are  retained,  and since ratios of complex variables  are 
defined, the  usual dimensional methods  may  be  applied. 
For simplicity in notation,  the boldface type  usually 
reserved for  vectors will be  used to  represent complex 
variables;  thus V will mean u+iv ,  r will mean rr+iry,  
etc.;  equation (4) then becomes 



October 1965 Abram B. Bernstein 581 

and if there  are no accelerations, this reduces to 

The  logarithmic law may be written  in  the  same  notation  as 

where V, is defined as ( r / p ) 1 / 2 .  The  assumption is now 
made that  there exists an  equation, valid throughout  the 
planetary  layer, of the form 

where C$ represents  an unspecified function  and a, p, . . . 
are  whatever  additional variables and  parameters  may  be 
required.  Further it is  assumed that  this  equation is 
uniquely  determined by  the  equation of motion (7) 
together with an  appropriate  set of boundary conditions, 
and  that  this  equation reduces to  the  logarithmic law (8) 
as z approaches zo. For  the  sake of simplicity it will be 
assumed that  the geostrophic wind does not  vary  with 
height (i.e., that  the  atmosphere is barotropic);  a similar 
but more  complicated  analysis may  be performed for the 
more general baroclinic case. For  our  boundary con- 
ditions we note  that  at  the  top of the  planetary  layer 
the wind  shear  and  the  stress vanish and  the wind  becomes 
geostrophic, while at  the  bottom of the  planetary  layer 
t'he wind  itself vanishes, and we write 

(a) lim V=O 
Z+ZO 

(b) lim V=V, 
Z+Zh 

(c) lim T = T ~  

(d) lim r=O 

where Zh represents  the  top,  and zo the  bottom, of the 
planetary  layer.  Other  boundary conditions could  con- 
ceivably be  written,  e.g., 

2+20 

Z+Zh 

but although these are  true  statements,  they  do  not  appear 
to be  relevant to the problem and  have therefore been 
excluded, the aim  being to  write  the minimum  number of 
equations  needed to provide a solution. 

Two different procedures may  be used to find a solution 
to  this problem. First  the  ordinary dimensional  method 
will be considered, taking  the  set of relevant variables to 
be those variables appearing in the governing  equations 
(7) and (10). Then Long's generalized method will be 
introduced,  and  the differences between the solutions 
found by  the two methods will be assessed. 

3. ANALYSIS BY THE ORDINARY  DIMENSIONAL 
METHOD 

From  equations (7) and (10) the variables relevant  to 
flow in  the  planetary  layer  are seen to be V, V,, p, f, r, ro, 
z, Zh, and zo. Accordingly wsassume  that a  functional 
relationship exists of the form 

v? vg, P ,  f? 7~ z,  zh, z O }  =O (11) 

and we seek the  appropriate  set of independent  dimension- 
less combinations.  The physical dimensions of the 
variables are 

and  these nine variables in  three dimensions yield six 
independent dimensionless combinations, permitting us 
to  write 

The dimensionless products  may be rewritten  in  many 
ways, so long as  care  is  taken  to ensure that  the  set remains 
independent;  thus  instead of V/V, we may  write (ro/p)1/2/V,, 
and  instead of V/jzo we may  write V,/jzo. Applying this 
procedure, introducing  the  symbol V* for (rip)'/', and 
solving for V we find 

For reasons which will appear below, this  solution  has 
been written  in  such  a way as to  distinguish between 
parameters  and  variables;  thus  in  any given situation 
V*,/V,, V,/jzo and zh/zo are  parameters, while z/zo and 
V*/V*, are  height-dependent variables. 

We now invoke  the condition that equation (14) must 
reduce to  the  logarithmic law  near  the  ground. When z 
is small, V* is equal  to V*, so that  the  ratio of these 
quantities is unity  and (14) becomes 

Setting (8) equal to  (15) we have 

Since z/zo is the only variable  appearing  in this equation 
(all the  other dimensionless products  being  parameters), 
t.he right  hand side must  vary as In (z /zo)  so that 
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1 2  In -=+ { * o r  v v  2,"). In - 2 dimensions to  the  relevant  variables.  The  ordinary 
2 0  v, f20 20 20 (17) method  makes use of physical  dimensions  such as mass, 

length,  time, etc., whereas the generalized method  makes 
from  which it follows that use of mathematical  relationships  among the variables 

specified by  the  governing  equations. For example, if the 
(18) geostrophic wind equation 

or 

At  this  point we may  note  that  Rossby  and  Montgomery 
[lo], in  an  extensive  study of winds in  the  friction  layer, 
concluded that  under  adiabatic  conditions  any one of 
V*,/V,,  V,/fzo, zh/zo, serves to  determine  the  other  two; 
thus 

Rossby  and  Montgomery give the  actual  functions Q ~ ,  
and +2; see  their  equations  (31b),  (32a),  (32b), (35). If 
their  results  are  correct,  then  certainly  the weaker require- 
ment of equation (19) is satisfied. 

Equation (18) states  that  any  two of V*,/V,, Vg/fzo, 
"h/"o serve to  determine the  third; consequently  any  one 
of these dimensionless products  may  be  eliminated from 
the general  solution (14). Thus if we choose to  think of 
the  surface  stress  as being  completely  determined  by the 
geostrophic  wind, the surface roughness, the  depth of the 
friction  layer,  and  the  latitude, we may  eliminate it by 
rewriting (14) as 

Alternately, we may reason that of all the  parameters 
listed, Zh is the least  susceptible to direct  measurement  and 
should  therefore  be excluded, and we may  rewrite (14) as 

As a  third  possibility,  the effect of latitude  may be  excluded 
bv writing - 

> -J -J - 

Thus  equation (14), which represents  the  solution for an 
atmosphere  governed solely by  equations (7) and (lo), 
reduces  to (21),  (22), or (23) when we introduce  the condi- 
tion  that  the  logarithmic profile is the limiting case near 
the ground.  We now proceed to  compare  these  results 
with  those  obtained  by generalized dimensional analysis. 

4. ANALYSIS BY THE GENERALIZED  DIMENSIONAL 
METHOD 

The essential difference between ordinary  and gener- 
alized dimensional  analysis lies in  the  method of ascribing 

were  one of the  equations  governing  some problem, the 
ordinary  method would  ascribe  dimensions as 

[u,]=LT-' 

[p]=ML-3 

[A = T" 

[p] =ML-'T-2 

[YI =L (25) 

There would thus  be five variables in three dimensions, 
and two independent. dimensionless products, 

3 and 7 P 
P% 

would be  formed. The generalized method  would as- 
cribe arbitrary dimensions A, B, C, . . . to  the variables 
so that 

[u,l=A 

[PI=B 

[fl=C 

[PI =D 

[Yl = E  (26) 

Then, for the  equation to  be dimensionally  homogeneous, 
it is necessary that 

so that 
D A=-- 

BCE 

(27) 

and D is equal to ABCE. The five variables  are  thus 
expressible in  four  independent dimensions, and  only 
one  independent dimensionless product arises, 

p 
PfY% 

Since it is  desirable to find the smallest possible number 
of independent dimensionless products, it would  clearly 
be advantageous  to use the generalized procedure  in 
this case. 

Long has  pointed  out  that  the generalized method is 
equivalent to  the search for invariance of an  equation 
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under  a  set of transformations of the variables of the 
form x=kx', k being a constant.  Thus if the variables 
in (24) are  transformed  by 

Ug=aTu: 

P=BP' 

f =-ff ' 
p=6p' 
y=ey' 

where a, 8, y, 6, and E are  constants,  then  the equation 
may  be  written in terms of the primed  variables as 

This is  identical in form to  the original  equation only 
if 

6 = f f & E  (31) 

Thus  the transformation  constants a, 8, y, 6, and E play 
the same role as  the generalized dimensions A, B, C, Dl 
and E.  

Occasionally it appears that  the generalized procedure 
yields fewer dimensions than  the ordinary procedure. 
For instance, the physical dimensions of the variables 
appearing  in the equation of state 

p=pRT (32) 

are mass, length,  time,  and  temperature, since 

[p]=ML"T-' 
[ p ]  =ML -3 

[ R]  =L2T-2e-1 
[ T]=e  (33) 

Yet the generalized method shows that  there  are only 
three  independent dimensions, for 

[ P l = [ P l ~ [ R l - [ ~ l  (34) 

This  apparent  contradiction is resolved when we see that 
the  four physical dimensions in this example are  not 
independent,  and  that  the variables  can be expressed in 
three independent dimensions as 

[p]=(ML-3)(LT")2=DVZ 

[ p ]  = = D 

[R]=(LT-1)2e-1=V2e-l 

[ T]=e (35) 

where D is the dimension of density, V is the dimension of 
velocity, and 0 is the dimension of temperature. 

Generalized dimensional analysis  can  only  be used when 
the governing  equations  are  known, and is  therefore  not 

applicable to  many problems that  do  lend themselves to  
ordinary  dimensional  methods. I t  is, however, applicable 
to  the present  problem. If arbitrary dimensions A, B, 
C, . . . are ascribed to  the 
tions (5j and (8) such that 

[V]=A 

[VgI=B 

[pl=C 

[f l=D 

variables  appearing in equa- 

and the various  equations  are examined for dimensional 
homogeneity, it becomes apparent  that 

(37) 

and thus  the nine  variables may be expressed in  terms of 
four independent  dimensions (for example, C, Dl  E, and G) 
rather  than t,hree as found earlier by considering physical 
dimensions. Consequently we may form  only five inde- 
pendent dimensionless combinations, and in place of 
equation (13) we have 

We  now introduce the symbol V* for convenience, but 
since we are ignoring physical dimensions we know only 
that V i  has the same dimensions as f z o V g ;  we do  not know 
that V* has the same dimensions as V or that jz,, has the 
same dimensions as V, .  Consequently we cannot express 
the solution for V as  the  product of V* and some unspeci- 
fied function as we did in (14), but must express it in some 
other  way;  one such expression is 

(39) 

For purposes of comparison,  equation (14) may  be re- 
written  as 

Comparing  these  solutions we see that not  only  does (39) 
contain  one less dimensionless product, but it specifically 
indicates that  the  two quantities 

which appear  as  independent  variables  in (40), do  not 
affect the problem  separately but only  in the combination 
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(?y.(&& 
which appears in (39). Thus  the solution  found by  the 
generalized procedure, considering only  equations (7) and 
(10) as  the governing  equations,  is  more efficient (since 
it contains fewer dimensionless products) than  that found 
by  the ordinary  method. 

We now introduce the condition that (39) must reduce 
to  the logarithmic law near the ground. Proceeding as 
before, we set (8) equal to (39) with V* equal to V*,, giving 

As before, z/zo is the only variable and  may  be eliminated 
from both sides, leaving 

(43) 

which is  equivalent  to ( 18) and (19) .  Thus  the condition 
under which the generalized solution  reduces  to the 
logarithmic law near  the  ground is the  same as for the 
ordinary  solution.  Furthermore, if equation (43) is 
used to eliminate  one or another of the dimensionless 
products  from (39) ,  the solution becomes identical  to (21) , 
(22), or (23).  Thus when the logarithmic  law is intro- 
duced the solution is the  same whichever procedure 
is followed. This occurs because the  logarithmic law 
specifies that V and V, have.the  same dimensions. If, 
however, we want a less rest,ricted  solution, valid regardless 
of the profile at the lower boundary,  the generalized 
method gives the preferred  result. 

5. DISCUSSION 
The foregoing analysis  rests on two assumptions-that 

dimensional  analysis is applicable  to  problems  in which 
the relevant,  variables are two-dimensional  vectors,  or 
complex numbers,  and that  the  eqmtions of motion, 
together  with  the chosen set of boundary conditions, 
define a  unique  relationship  between the wind and  the 
stress.  These  assumptions will be discussed in  turn. 

From a mathematical  point of view, generalized dimen- 
sional  analysis may  be  thought of as the application of 
simple  linear  transformations which leave the governing 
equations  unchanged.  Since  this  procedure may  be 
applied to  any  set of equations,  scalar or otherwise, it 
appears that dimensional reasoning is indeed  applicable 
to  vector problems. From  a  physical  point of view the 
question is less simple. We  have seen that ordinary 
dimensional  analysis cannot  be applied to problems 
involving three-dimensional vectors. Yet  many of the 
classical problems to which dimensional  reasoning has 
been applied are essentially  vectorial  in nature, in that 
they involve forces and velocities which lie in different 
directions.  Any problem involving  a  horizontal  pressure 
gradient  and a  gravitat,ional  force is of this  nature. 

Usually such  problems  contain  certain  basic  symmetries 
which enable  them to  be  handled  by  ordinary dimensional 
methods.  However, Huntley [4! has  suggested that in 
many cases more efficient solutions may  be  obtained when 
the dimensional procedure is modified by  the introduction 
of three  distinct  length dimensions in the  three orthogonal 
directions. For example,  in the case of fluid flow 
through  a  pipe, the length dimension enters  into  a  down- 
stream velocity, the distance  downstream  from  an orifice 
or a  change  in  surface  roughness, the pipe  diameter,  and 
the distance of a  particle  from  a  pipe wall. The first two 
obviously involve  "downstream"  distances while the  last 
two involve "cross-stream" distances. According to 
Huntley's  method, the  ratio of distance  from  the wall to 
pipe  diameter would be dimensionless while the  ratio of 
distance from  the orifice to pipe  diameter would not. 
The  same reasoning may  be applied  where three directions 
are  involved. Huntley gives examples of problems which 
are  intractable  by  the usual  method but which may be 
solved when vector  lengths  are  introduced. 

It is not a t  all clear how this concept may be  applied to 
atmospheric  problems. In  the problem considered in 
this  paper,  Huntley's  method  may  be  applied  in  a  limited 
sense by considering two length dimensions,  one  in the 
horizontal (Lh) and one in  the vertical ( L J .  There is 
then no dimensional ambiguity;  the horizontal velocities V 
and V, have dimensions LhT-' while heights  such as z, & 
and z h  have  the dimension L,. The stresses 7, T~ then 
have  the dimensions MLh-1T-2, representing  a force in  a 
horizontal  direction  divided by a  horizontal  area, and V*, 
V*,, have  the dimensions Lh'/2L,1/2T" . (Note  that  in  this 
context V/V* is not dimensionless.) Ordinary  dimensional 
analysis then gives the  same solution as was found by  the 
generalized method, as is to  be expected  since this ap- 
proach increases the  number of dimensions by one. 
However, further progress through the introduction of a 
third  length  dimension  appears impossible, for there  is  no 
way to ascribe  dimensions to  the  ratio V/V, unless the 
two  vectors are parallel  or  perpendicular.  Suppose the 
wind is broken  up  into  easterly  and  northerly components, 
u and v, having the dimensions L,T" and L,T" respec- 
tively,  and the geostrophic wind is treated similarily. 
Then u/u, and v/v, are dimensionless, while ulv, has 
dimensions L,L,-' and v/u, has dimensions L L - I .  The 
ratio V/V, is dimensionless if both vectors  are  dlrected to 
the  east, for example, and  has dimensions L,L," if V is 
directed to  the  north  and V, to  the east. Butiit is not 
clear what dimensions may  be ascribed to V/V, if V is 
directed to  the  northeast  and V, to the east-southeast. 
It seems, therefore, that only  problems  containing certain 
fundamental  symmetries (such as  having all vectors  lie 
in  orthogonal  directions) may  be  treated  by  the  method 
of vector  lengths,  and  that such  problems may  be ade- 
quately  handled  whether  the  vectors  are two- or three- 
dimensional. 

The question then arises of whether we are justified 
in ignoring the vector  aspects of length  and applying 

.= 
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ordinary  dimensional analysis to vector problems which 
do not  contain  such  symmetries. We have seen that  this 
method will not work  when the  vectors  are  three- 
dimensional (unless we introduce tensors, which are  not 
generally considered in dimensional analysis) , and  there 
is therefore some doubt  as  to  whether it is truly valid 
when the vectors are two-dimensional. At  best it appears 
that a solution achieved in  this  way is  less precise, in that 
it involves more dimensionless products,  than one achieved 
by considering the vector nature of the problem, but  as 
long as  the complete three-dimensional vector problem 
cannot be  handled  the  situation  must  be  regarded  as 
somewhat  unsatisfactory. In presenting dimensional 
analysis as a special case of invariance  theory,  Long 
intimates  that if more complex transformations  than those 
mentioned earlier are  applied,  more  detailed solutions can 
be  found,  and it may be that  further  development in this 
area will provide  a basis for extending  dimensional 
reasoning to general vector problems. 

The question of whether  equations (7) and (10) are 
sufficient to  determine  a  unique solution of the form (9) 
is likewise difficult to  answer.  One  may well argue that 
additional differential equations  or  boundary conditions 
may  be needed. To a  certain  extent,  the  validity of the 
approach  used  is  borne  out by  the general agreement of 
the  result  with  the  Rossby-Montgomery  result; however 
this merely  indicates that no serious discrepancy has 
arisen and  cannot  be  taken  as proof that  the method is 
valid. Just  as  the  validity of a solution found  by  ordinary 
dimensional  analysis  depends on the completeness of the 
set of releva.nt  variables, so a  solution  found  by  the 
generalized method  depends for it>s va.lidity on the com- 
pleteness of the  set of governing  equations,  and it appears 
that  in  both  instances we must  rely largely on intuition 
to  make  the  proper selection. 

Several  other  points  are  worth  noting.  Although  the 
ordinary  and generalized procedures  gave rise to different 
solutions  when  only  equations (9) and (10) were used, 
both  gave  the  same solution when  use was made of the 
logarithmic  law  as  a  lower  boundaxy  condition.  This 
simply  means that  in  any  atmosphere, if the form of the 
wind profile a t  the  lower boundary is not known, the 
generalized approach gives the  more efficient result.  Thus 
if there is any  doubt  that  the  logarithmic law is the  appro- 
priate lower limit,  the generalized solution (39) is t.0 be 
preferred to  the  ordinary solution (14). When  the wind 
profile near  the pound is known,  however, and is such 
that V and V* must  have  the  same dimensions, both 
procedures give the  same  result. 

A second point is that although in principle the  results 
achieved here  may  be  subjected  to experiment.al verifi- 
cation,  in  practice  this  may  not  be possible because of the 
difficulty of determining zh, the  total  depth of the  plane- 
tary  layer.  Jn  fact i t  is  questionable  whether  the clearly 
defined planetary  boundary  layer  postulated  here ever 
actually exists, except possibly under  very special circum- 
stances,  and even then, it is not obvious how zh might 
be  measured. 

Third,  it  must be  emphasized that  the development 
presented  here refers t.o neutral  conditions only. Under 
non-neutral conditions it is necessary to  introduce  addi- 
tional  governing  equations involving the  vertical  heat 
flux and  the associated buoyancy forces. 

Fourth,  one  may  argue  that  not all the variables appear- 
ing in (11) are  independent,  in  that  the  surface  stress is 
completely  determined by  the geostrophic wind, the 
surface roughness, the  latitude,  and  the  depth of the 
planetary  layer.  Indeed,  this is the  result  stated  in 
equation (19). However i t  seemed  reasonable to deduce 
this result from the  equations of motion,  the  boundary 
conditions, and  the  logarithmic  law,  rather  than t.0 assume 
it initially on an  intuitive basis. 

Finally, it must  be  noted  that  the “solutions” repre- 
sented  by  equations (14), (19),  and (39) are  not  complete 
in  that  they  contain unspecified functions which must  be 
determined  by  experiment.  This  is  generally  the case 
witah solutions  found  by  dimensional reasoning. The 
value of these  solutions  is that  by specifying particular 
combinations of the  relevant  variables  as being  func- 
tionally related,  they  reduce  the  number of independent 
variables that  must  be considered in analyzing an ex- 
periment. The goal of this  procedure is to ac.hieve the 
greatest possible reduction  in  the  number of variables, 
and  therefore  the  dimensional  method yielding the 
smallest number of dimensionless combinations  is  always 
t.0 be preferred. 
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